

User Manual

ODYSSEUS/COSMOS

Version 3.0

Manual Release 2

Aug. 2016

Copyright © 1995-2016 by Kyu-Young Whang

Advanced Information Technology Research Center (AITrc)

KAIST

ODYSSEUS/COSMOS User Manual, AITrc, KAIST Copyright © 1995-2016 by Kyu-Young Whang

i

Contents

1. ODYSSEUS/COSMOS ... 1

1.1. ODYSSEUS/COSMOS 32bit .. 3
1.2. ODYSSEUS/COSMOS 64bit Supporting Large Databases 3
1.3. ODYSSEUS/COSMOS 64bit Without Supporting Large Databases 4

2. Compiling ODYSSEUS/COSMOS .. 5

2.1. Running Environment ... 5
2.2. Development Environment ... 5
2.3. Compilation Method.. 6

3. How to Use ODYSSEUS/COSMOS ... 8

4. Examples ... 9

4.1. COSMOS_SimpleFormat ... 9
4.2. COSMOS_CreateRelation ... 10
4.3. COSMOS_InsertTuple ... 11
4.4. COSMOS_PrintRelation .. 11

ODYSSEUS/COSMOS User Manual, AITrc, KAIST Copyright © 1995-2016 by Kyu-Young Whang

1

1. ODYSSEUS/COSMOS

ODYSSEUS/COSMOS is a storage system for information retrieval that is tightly coupled with text

information retrieval and spatial database engines. It is a core software used as a substructure in a wide

variety of database application software. The figure below shows the architecture of

ODYSSEUS/COSMOS. It consists of Raw Disk Manager (RDsM) for managing disks; Buffer Manager

(BfM) for managing the buffer; Object Manager (OM) for managing data by object unit; Large Object

Tree Manager (LOT) for managing large-capacity data like multimedia data; Btree Manager (BtM) and

Multi Level Grid File Manager (MLGF) for effective search support; Recovery Manager (RM) for crash

recovery support; Transaction Manager (TM) for transaction support; Scan Manager (SM) that supports

convenient use of storage system; Low Relational Data System (LRDS) that supports the relational

model; Low Object Model Manager (LOM) that supports the object-oriented model; the tightly-coupled

Spatial DB Engine for geographic information systems; the tightly-coupled IR Engine for fast text

information retrieval, and ODYSSEUS/COSMOS API for convenience of use.

ODYSSEUS/COSMOS supports the Linux OS from Red Hat. It was developed using C, and

consists of approximately 178,000 lines of code.

ODYSSEUS/COSMOS comes in two versions: the coarse granularity locking version, with volume

level locking, and the fine granularity locking version (that has not been released as of Aug. 2016), with

record level locking. Though implemented differently, the two versions do not vary greatly in their

method of use. For this reason, this manual does not treat the two versions separately except when

necessary.

ODYSSEUS/COSMOS User Manual, AITrc, KAIST Copyright © 1995-2016 by Kyu-Young Whang

2

ODYSSEUS/COSMOS is classified into ODYSSEUS/COSMOS 32bit, ODYSSEUS/COSMOS

64bit supporting large databases, ODYSSEUS/COSMOS 64bit without supporting large databases 1

depending on the OS (operating systems) environment and the maximum database size available. Details

are explained in Sections 1.1~1.3.

Information on how to compile and use ODYSSEUS/COSMOS form the main content of this

document. Details about the design, implementation, and functions in each module are explained in

separate documents. The following is a brief summary of the available documents and their contents.

 User Manual: Compilation and use

 Functional Specification: Detailed description of each function (not released as of August 2016)

 Reference Manual: Use of API functions

 External Document: Concept of ODYSSEUS/COSMOS (not released as of August 2016)

1 As of August 2016, there are a few known bugs due to 32bit-64bit type mismatch in the
ODYSSEUS/COSMOS 64 bit version.

ODYSSEUS/COSMOS User Manual, AITrc, KAIST Copyright © 1995-2016 by Kyu-Young Whang

3

1.1. ODYSSEUS/COSMOS 32bit

ODYSSEUS/COSMOS 32bit can be run on the 32bit OS environment. The size of the memory

determines the size of the buffer that ODYSSEUS/COSMOS can use. Since the maximum size of the

memory available in the 32bit OS environment is 4GB, that of the buffer available is also 4GB. The size

of OID determines the size of the database volume that can be used. Since the size of the integer type

used in the ODYSSEUS/COSMOS 32bit engine is 2bytes or 4bytes, the maximum size of the database

volume is 8TB. With the appearance of the 64bit computer and of the large-size memory and disk,

ODYSSEUS/COSMOS 64bit supporting large databases is developed to increase the size of the buffer

and the database volume available.

1.2. ODYSSEUS/COSMOS 64bit Supporting Large Databases

ODYSSEUS/COSMOS 64bit supporting large databases can be run on the 64bit OS environment. Since

the maximum size of the memory available in the 64bit OS environment is 16EB(260), that of the buffer

available is also 16EB. Since the size of the integer type used in the ODYSSEUS/COSMOS 64bit engine

supporting large databases is 4bytes or 8bytes, the maximum size of the database volume is 32ZB(270).

While ODYSSEUS/COSMOS 64bit supporting large databases can use the large-size buffer and database,

the size of the database of ODYSSEUS/COSMOS 64bit supporting large databases is twice as large as

that of ODYSSEUS/COSMOS 32bit that stores the same data. This is because the size of the integer type

used in the ODYSSEUS/COSMOS 64bit engine supporting large databases is twice as large as that used

in the ODYSSEUS/COSMOS 32bit engine and the size of OID of the former is twice as large as that of

the latter. Therefore, the database of ODYSSEUS/COSMOS 64bit supporting large databases is not

compatible with ODYSSEUS/COSMOS 32bit. ODYSSEUS/COSMOS 64bit without supporting large

databases is developed to reduce the size of the database and to make the database compatible with

ODYSSEUS/COSMOS 32bit.

ODYSSEUS/COSMOS User Manual, AITrc, KAIST Copyright © 1995-2016 by Kyu-Young Whang

4

1.3. ODYSSEUS/COSMOS 64bit Without Supporting Large Databases

ODYSSEUS/COSMOS 64bit without supporting large databases can be run on the 64bit OS environment.

Its database is compatible with ODYSSEUS/COSMOS 32bit. Since it is run on the 64bit OS environment,

the maximum size of the buffer available is 16EB. The maximum size of the database is 8TB, which is

the same as that of ODYSSEUS/COSMOS 32bit since they use the same size of the integer type and OID.

The following table summarizes comparisons among ODYSSEUS/COSMOS 32bit,

ODYSSEUS/COSMOS 64bit supporting large databases, and ODYSSEUS/COSMOS 64bit without

supporting large databases, which are explained in Sections 1.1~1.3.

ODYSSEUS/COSMOS

32bit

ODYSSEUS/COSMOS

64bit supporting

large databases

ODYSSEUS/COSMOS

64bit without

supporting large

databases

The maximum size of

the buffer
4GB 16EB(260) 16EB(260)

The maximum size of

the database volume
8TB 32ZB(270) 8TB

Database

compatibility

Compatible with

ODYSSEUS/COSMOS

64bit without

supporting large

databases

Not compatible

Compatible with

ODYSSEUS/COSMOS

32bit

ODYSSEUS/COSMOS User Manual, AITrc, KAIST Copyright © 1995-2016 by Kyu-Young Whang

5

2. Compiling ODYSSEUS/COSMOS

2.1. Running Environment

ODYSSEUS/COSMOS can be run on Linux (Red Hat). The environment for running

ODYSSEUS/COSMOS is as follows.

 Platform: Linux 2.6

2.2. Development Environment

ODYSSEUS/COSMOS was developed on Linux (Red Hat). The development environment used is as

follows.

32bit

 Platform: Linux 2.6

 Hardware: Linux server

 Compiler: gcc 4.1.2 Compiler

64bit

 Platform: Linux 2.6

 Hardware: Linux server

 Compiler: gcc 4.4.7 Compiler

ODYSSEUS/COSMOS User Manual, AITrc, KAIST Copyright © 1995-2016 by Kyu-Young Whang

6

2.3. Compilation Method

To use ODYSSEUS/COSMOS, the source code must first be compiled, then the system must be linked to

a database application software. Compilation methods are explained in this Section. Section 3 explains

how to use ODYSSEUS/COSMOS by linking it to a database application software.

LinuxOS

Compilation is performed in the ODYSSEUS/COSMOS source code directory using the procedure

outlined below. Items marked [Coarse] after the number apply only to the coarse granularity locking

version of ODYSSEUS/COSMOS, while items marked [Fine] after the number apply only to the fine

granularity locking version of ODYSSEUS/COSMOS. All other items apply equally to both versions.

ODYSSEUS/COSMOS 32bit is compiled on 32bit Linux, and ODYSSEUS/COSMOS 64bit is compiled

on 64bit Linux.

① Open the Header/param.h file and change the parameter settings. The various macros requiring

deletion or addition are as follows:

삭제해야 할 매크로 추가해야 할 매크로

#define SOLARIS64

#define AIX64

#define WIN64

#define LINUX64

#undef READ_WRITE_BUFFER_ALIGN_FOR_LINUX #define READ_WRITE_BUFFER_ALIGN_FOR_LINUX

② Open the Err/update-cosmos_r.py file and modify the path of the program that will be used to run the

python script language. That is, replace the first line of the Err/update-cosmos_r.py file with a line

that has “#!” added to the beginning of the path of the python program to be used. For example, if

the path of the python program is “/usr/bin/python”, the first line of the Err/update-cosmos_r.py file

must be changed to “#!/usr/bin/python”.

③ [Coarse] Open the Err/Err_Error.pl file and modify the path of the program that will be used to run

the perl script language. That is, replace the first line of the Err/Err_Error.pl file with a line that has

“#!” added to the beginning of the path of the perl program to be used. For example, if the path of

the perl program is “/usr/bin/perl”, the first line of the Err/Err_Error.pl file must be changed to

“#!/usr/bin/perl”.

ODYSSEUS/COSMOS User Manual, AITrc, KAIST Copyright © 1995-2016 by Kyu-Young Whang

7

④ [Fine] Open the Makefile file and modify the path of the program that will be used to run the perl

script language. That is, change the value of the variable PERL in Makefile to the path of the perl

program to be used. For example, if the path of the perl program is “/usr/bin/perl”, the line that reads

“PERL = /usr/local/bin/perl” in Makefile must be changed to “PERL = /usr/bin/perl”.

⑤ [Coarse] Open the BfM/Makefile file and modify the path of the assembler compiler. That is, change

the value of the variable AS in BfM/Makefile to the path of the assembler compiler to be used. For

example, if the path of the assembler compiler is “/usr/bin/as”, the line that reads “AS =

/usr/ccs/bin/as” in BfM/Makefile must be changed to “AS = /usr/bin/as”.

⑥ [Fine] Open the SHM/Makefile file and modify the path of the assembler compiler. That is, change

the value of the variable AS in SHM/Makefile to the path of the assembler compiler to be used. For

example, if the path of the assembler compiler is “/usr/bin/as”, the line that reads “AS =

/usr/ccs/bin/as” in SHM/Makefile must be changed to “AS = /usr/bin/as”.

⑦ [Fine] Open the Misc/Makefile file and modify the compile options for Solaris to compile options

for Linux. That is, in Misc/Makefile, change “CC = cc –mt” to “CC = gcc –pthread”, and “LIBS

= -lm -lsocket -lnsl -lintl -lpthread –lrt” to “LIBS = -lm -lnsl -lpthread –lrt”.

⑧ Open the /Header/param.h file. Undefine the macro, SUPPORT_LARGE_DATABASE2, for

ODYSSEUS/COSMOS 32bit and ODYSSEUS/COSMOS 64bit without supporting large databases;

define the macro for ODYSSEUS/COSMOS 64bit supporting large databases.

⑨ Execute make to begin compiling. After compilation is complete, check to make sure that the

ODYSSEUS/COSMOS object file (cosmos.o) has been created. If it has not, compilation has not

been carried out properly. Check for compile error, resolve the issue, and perform the compilation

again.

ODYSSEUS/COSMOS User Manual, AITrc, KAIST Copyright © 1995-2016 by Kyu-Young Whang

8

3. How to Use ODYSSEUS/COSMOS

ODYSSEUS/COSMOS is used by linking it to an application software. To do this, the header files for

ODYSSEUS/COSMOS must be included in the source code of the application software that will be

linked to it, and the API function of ODYSSEUS/COSMOS must be called from the application software.

In addition, when compiling the software, it must be configured to link the object file for

ODYSSEUS/COSMOS. This process is explained in more detail below.

① Copy the header files and object file for ODYSSEUS/COSMOS to a desired location. The header

files needed are “cosmos_r.h”, “dblablib.h”, “param.h”, and “trace.h”, located in the header directory

of the source code directory for ODYSSEUS/COSMOS. The object file needed is “cosmos.o”,

generated as a result of the compilation performed in section 2.

② To use the API function of ODYSSEUS/COSMOS in the application software, the LRDS_Init()

function and LRDS_AllocHandle() function must be called first. When no longer using the API

function of ODYSSEUS/COSMOS, the LRDS_FreeHandle() function and LRDS_Final() function

must be called. The roles and methods of use for of these each functions are explained in the

Reference Manual.

③ When compiling the application software, ODYSSEUS/COSMOS must be linked. In addition, the

compile option (-pthread) for using POSIX threads and the compile option (-lm) for using

mathematical functions must also be included. For example, to create an application software named

“test” by compiling the source code “test.c” using the gcc compiler, with the ODYSSEUS/COSMOS

header files in “/user/test/Header” and the ODYSSEUS/COSMOS object file (cosmos.o) in

“/user/test/COSMOS”, the following command should be used.

> gcc –pthread –lm –o test –I/user/test/Header test.c /user/test/COSMOS/cosmos.o

ODYSSEUS/COSMOS User Manual, AITrc, KAIST Copyright © 1995-2016 by Kyu-Young Whang

9

4. Examples

This section provides an explanation of some sample programs written with ODYSSEUS/COSMOS.

Sample programs include COSMOS_SimpleFormat, which formats a volume for storing databases;

COSMOS_CreateRelation, which generates a relation for storing data; COSMOS_InsertTuple, which

inserts tuples; and COSMOS_PrintRelation, which displays the tuples in the relation. The source codes

for all four programs are located in the sample program directory, and should be compiled for use.

Compilation must be carried out within the sample program directory, according to the steps described

below.

① Open Makefile and modify the paths for the ODYSSEUS/COSMOS header files and object file. In

other words, modify the variable values for INCLUDE and COSMOS_OBJ within Makefile. For

instance, if the header files for ODYSSEUS/COSMOS are located in the directory

“/user/test/Header” and the object file (cosmos.o) in the directory “/user/test/COSMOS”, change

“INCLUDE = ./Header” to “INCLUDE = /user/test/Header” and “COSMOS_OBJ

= ./COSMOS/cosmos.o” to “COSMOS_OBJ = /user/test/COSMOS/cosmos.o”.

② Perform the compilation by running make. Once compilation is complete, check to see that all the

executable files (COSMOS_SimpleFormat, COSMOS_CreateRelation, COSMOS_InsertTuple,

COSMOS_PrintRelation) have been created. If these files have not been created, compilation has not

been completed properly. Identify the error, resolve the issue, and perform the compilation again.

4.1. COSMOS_SimpleFormat

COSMOS_SimpleFormat is a program that formats volumes for storing databases, and is used as follows:

COSMOS_SimpleFormat [-volumeTitle <volume title>] [-volumeID <volume ID>]

[-device <device path> <number of page>]+

The name of the volume to be created is indicated as <volume title>. <volume ID> is the descriptor for

the volume to be created, and must be a 2 byte integer greater than 0. <device path> and <number of

page> indicate the name of the device composing the volume and the number of pages in the device,

respectively. <device path> and <number of page> may be more than one.

ODYSSEUS/COSMOS User Manual, AITrc, KAIST Copyright © 1995-2016 by Kyu-Young Whang

10

For instance, to format a volume named “test” with a volume ID of 1000, made up of a device

named “test1.vol” consisting of 500 pages and a device named “test2.vol” consisting of 400 pages, the

following command should be used.

> COSMOS_SimpleFormat -volumeTitle test -volumeID 1000 -device test1.vol 500 -device test2.vol 400

After executing the above command, check to confirm that test1.vol and test2.vol have been created.

4.2. COSMOS_CreateRelation

COSMOS_CreateRelation is a program that generates the relation for storing data, and is used as follows:

COSMOS_CreateRelation [<device path>]+

<device path> indicates the name of the device composing the volume. If there is more than one device,

the names of all devices must be specified.

When the program is run, a prompt asks for the name of the relation to be created, the number of

columns that make up the relation, and the column type for each of the columns. Once these values are

entered as required, the relation is created. In the sample program, only integers, floats, and 128 character

strings may be used as the column type.

For example, to generate a relation named “testRelation” consisting of an integer column, float

column, and string column in a volume made up of two devices named “text1.vol” and “test2.vol”, the

program may be run as follows.

> COSMOS_CreateRelation test1.vol test2.vol

Please type the relation name: testRelation

Please type the number of columns: 3

Please type the type of 1th column (1:integer, 2:float, 3:string(128)): 1

Please type the type of 2th column (1:integer, 2:float, 3:string(128)): 2

Please type the type of 3th column (1:integer, 2:float, 3:string(128)): 3

>

ODYSSEUS/COSMOS User Manual, AITrc, KAIST Copyright © 1995-2016 by Kyu-Young Whang

11

4.3. COSMOS_InsertTuple

COSMOS_InsertTuple is a program for inserting tuples into the relation, and is used as follows:

COSMOS_InsertTuple [<device path>]+

<device path> indicates the name of the device composing the volume. If there is more than one device,

the names of all devices must be specified.

When the program is run, a prompt asks for the name of the relation and the values of the columns

that make up the tuple to be inserted into the relation. Once these values are entered as required, the tuple

is inserted. In this case, the column type for each constituent column is displayed as text.

For example, to insert the tuple <10, 3.14, “abcdefg”> into a relation named “testRelation”

consisting of an integer column, float column, and string column in a volume made up of two devices

named “text1.vol” and “test2.vol”, the program may be run as follows.

> COSMOS_InsertTuple test1.vol test2.vol

Please type the relation name: testRelation

Please type the value of 1th column (integer): 10

Please type the value of 2th column (float): 3.14

Please type the value of 3th column (string(128)): abcdefg

>

4.4. COSMOS_PrintRelation

COSMOS_PrintRelation is a program that displays the tuples in a relation, and is used as follows:

COSMOS_PrintRelation [<device path>]+

<device path> indicates the name of the device composing the volume. If there is more than one device,

the names of all devices must be specified.

ODYSSEUS/COSMOS User Manual, AITrc, KAIST Copyright © 1995-2016 by Kyu-Young Whang

12

When the program is run, a prompt asks for the name of the relation. Once the name is entered, the

contents of the tuples included in the designated relation are displayed.

For example, when two tuples named <10, 3.14, “abcdefg”> and <5, 2.718, “hijklmn”> are included

in the relation “testRelation” located in a volume consisting of the devices “test1.vol” and “test2.vol”, the

program may be run as follows.

> COSMOS_PrintRelation test1.vol test2.vol

Please type the relation name: testRelation

integer| float| string|

10| 3.140000| abcdefg|

5| 2.718000| hijklmn|

>

	1. ODYSSEUS/COSMOS
	1.1. ODYSSEUS/COSMOS 32bit
	1.2. ODYSSEUS/COSMOS 64bit Supporting Large Databases
	1.3. ODYSSEUS/COSMOS 64bit Without Supporting Large Databases

	2. Compiling ODYSSEUS/COSMOS
	2.1. Running Environment
	2.2. Development Environment
	2.3. Compilation Method

	3. How to Use ODYSSEUS/COSMOS
	4. Examples
	4.1. COSMOS_SimpleFormat
	4.2. COSMOS_CreateRelation
	4.3. COSMOS_InsertTuple
	4.4. COSMOS_PrintRelation

